Java Content Repository

Tom Wheeler

Senior Software Engineer
Object Computing, Inc.

What Lies Ahead?

* An introduction
- What is the Java Content Repository?
* Basic concepts
- How does it work?
* Implementation
- How do | use the API?
* Putting it all together
- We'll dissect an application that uses JCR

2 (C) 2007, Tom Wheeler

What is the JCR?

* According to the JSR-170 request:

- “A Content Repository is a high-level
Information management system that is a
superset of traditional data repositories”

» Key points
- JCR defines a standard way to access data

- JCR is "content-centric"

* Developers focus on structure
* Not on how or where the data is actually stored

3 (C) 2007, Tom Wheeler

Motivation for Proposing JCR

* Many proprietary content repos exist
- API for interaction is vendor-specific
- There should be a standard API
* The standard API should be
- Independent of arch., data source or protocol

- Easy for a programmer to use
- Relatively easy for vendors to implement

4 (C) 2007, Tom Wheeler

JCR, the Overlooked API

* |CR seems to suffer from bad marketing
* It Is often seen as an API only for CMS

* |It's a uniform interface for data access

- As suitable for accessing a single String...
- As it is for accessing a 10GB binary object
- Abstracts datasource, not just the database

5 (C) 2007, Tom Wheeler

Application Performance

* Data storage is typically configurable *
- For example, filesystem, database or XML

* Exact needs will vary by application
- Amount, structure and type of data used

* To boost performance of your application

— Can switch/tune storage scheme
- Could also switch repository vendors

* available data storage schemes and
configuration details vary by implementation

6 (C) 2007, Tom Wheeler

Why Shouldn't You Use JCR?

* Can be clumsy for some tasks

- Maybe a poor replacement for properties files
* Extra dependencies

- Not part of J2SE

- Potentially a lot of extra JARs in your project
* Non-standard repository management

- Must use vendor-specific APIS in JCR 1.0

- This is much improved in JCR 2.0
» But tools are still implementation-specific

7 (C) 2007, Tom Wheeler

Which Applications Use JCR?

* Several portals and CMSs

- Liferay, JBoss, Sun OpenPortal...
- Magnolia, JLibrary, Archimede, OpenKM...

* Other interesting projects using JCR

- InfoQ Web site

- Freecaster.tv

— ASC PowerLender (loan origination system)
- Informa MapOfMedicine (clinical info app)

There are probably lots of internal corporate apps we don't know about

8 (C) 2007, Tom Wheeler

Who's Behind JCR?

 ASF (Apache) * |IBM

« ATG * Interwoven
 BEA * Oracle
 Day Software SAP

* Documentum * Sun

* HP * Vignette

Spec. Lead

9 (C) 2007, Tom Wheeler

Where Did it Come From?

* JSR-170 was proposed by Day Software

- 21 companies represented on expert group
- Won unanimous final approval

10 (C) 2007, Tom Wheeler

Where is it Going?

* JSR-170 was for JCR 1.0

* JCR 2.0 will be covered by JSR-283
- More standardized management APIs

11 (C) 2007, Tom Wheeler

JCR Implementation Levels

* JCR defines two conformance levels

- Level 1: Read-only (one-way)
- Level 2: Read-write (bi-directional)

* Plus optional features beyond these

* This helps legacy (CMS) vendors
- By giving them a path to compliance

* Potentially cuts costs for consumers
- Some apps would only ever need Level |

12 (C) 2007, Tom Wheeler

JCR Implementation Level 1

* Level 1: Read-only (one-way)

- Data access using any of these methods
* Node traversal
* Direct access
* Query using XPath
- Handles structured data only
— Can export entire repository to XML
* But cannot necessarily import one!

13 (C) 2007, Tom Wheeler

JCR Implementation Level 2

 Level 2: Read-write (bi-directional)

- Includes all level 1 features

— Import from XML

- Add/update/delete data

- Define/assign custom node types

- Handles structured and unstructured data
- Referential integrity

14 (C) 2007, Tom Wheeler

JCR Optional Features

* Locking
* Transaction management (JTA)

* Observation

- Event notification for repository changes
* Versioning

— Can retrieve previous revisions of data
* Query by SQL, in addition to XPath

15 (C) 2007, Tom Wheeler

Available Implementations

* Apache Jackrabbit
* Open source; reference implementation
* Alfresco
* Open source; highly regarded
* eXo Platform
* Open source
 Day Software CRX
 Commercial, from spec. lead's company

16 (C) 2007, Tom Wheeler

APl Overview

* JCR API defined in the javax.jcr package

- 15 interfaces
- two classes
- 14 exceptions

* Avoid coding to implementation classes
- Use javax.jcr.*
- Don't use org.apache.jackrabbit.core.*
- Can't always be avoided in JSR-170

17 (C) 2007, Tom Wheeler

Concepts: Data Is Hierarchical

Root node -
of workspace ‘ Earth ‘
/’/ \
| Europe ‘ ‘ Asia ‘
‘ Italy ‘ ‘ Norway‘ Thailand ‘ India ‘
Population: Population: Population: Population:
59 million 4.7 million 127 million 1.1 billion
Currency: Currency: Currency: Currency:
Euro Krone Baht Rupee

NOTE: Any node can hold properties, not just a leaf node

18 (C) 2007, Tom Wheeler

Concepts: Nodes and Properties

* Nodes organize the data e |
* Properties store the data ' Europe | 'réjg;des
* Think of a UNIX filesystem * ..~
aly
* Roots and paths
* Nodes are like directories opulation:
* Properties are like files 9 milien /...
- Any node can have properties | Properties
« Not just leaf nodes Cuency:)

* conceptual hierarchy does not match actual storage format on disk

19 (C) 2007, Tom Wheeler

Concepts: Node Types

* Nodes, like Java objects, have a type
- Types specify what data is allowed
* There are many primary types
— All inherit from a base type (nt:base)
- nt:unstructured IS the most flexible
* You can also define custom types *

- Actually needing to do this is less common
than you'd think

* Implementation-specific in JSR-170, but standardized in JSR-283

20 (C) 2007, Tom Wheeler

Concepts: Mixins

* A node can only have one primary type

 But can have multiple “mixin” types

- Added via Node.addMixin (String name)

- Common ones include:

* mix:lockable supports locking
e mix:referenceable supports UUIDs
* mix:versionable supports versioning

21 (C) 2007, Tom Wheeler

Concepts: Workspace/Session

* Jjavax.jcr.Session

- Provides access to repository content
- Provides access to root node
- Allows access of node by path or UUID

e Javax.jcr.Workspace

- Represents a view of the repository
- 1:1 mapping to a Session object
- Accessed Vvia Session.getWorkspace ()

22 (C) 2007, Tom Wheeler

Access Control

* You authenticate using some variation of
— Repository.login (Credentials cred)

* Authentication scheme is pluggable
- But JAAS implementation is typical default

* Access control is implementation-specific

- Jackrabbit uses AccessManager

e Built-in SimpleAccessManager (3 access levels)
* Can also plug-in custom implementations

23 (C) 2007, Tom Wheeler

Basic Steps for Using JCR

* Configure repository

» Start or create repository -

* Log into repository
» Get a Session but they happen infrequenty
* Work with data (add/delete/etc.)

* Log out of session

* Shut down repository -

24 (C) 2007, Tom Wheeler

Using JCR: Configuration

* Implementation-specific
* For Jackrabbit, a big ugly XML file
* Specify repository options

- Access control

- Repository data storage location

- Persistence Manager (DB, XML, FS, etc.)
- Search and indexing options

25 (C) 2007, Tom Wheeler

Using JCR: Starting a Repository

* If first usage, must create repo first

- Otherwise, you can start an existing repo
* Detalls are implementation-specific

- But the simplest case for Jackrabbit:

Fepositorvy repository = new TransientREepository();

* In production, you'll probably use JNDI

26 (C) 2007, Tom Wheeler

Using JCR: Log in/Get Session

* Authenticate using some form of
— Repository.login (Credentials cred)
- Exact type of Credentials may vary
- Only SimpleCredentials Is defined by API

- There are four overloaded 1ogin methods

» Can specify credentials — or not
« Can specify workspace — or not

« Return value is a Session object

27 (C) 2007, Tom Wheeler

Using JCR: Adding Data

try
Node root = session.getRootNode() ;
Node earthlNode = root.addNode | |-
Node europelNode = earthlode.addNode (|-
Node italvlNode = europelode.addNode | |-
italvlNode.setPropertv | , S59000000L) ;

italylNode.setProperty (

') ;

=sslon.save () ;
} catch (RepositorvyException =)

5

;

28 (C) 2007, Tom Wheeler

Using JCR: Accessing Data

* Data is contained in properties
- To get a property, you must first get the node
* There are three ways to access a node

- Direct access
- Traversal from another node
- From the result of a query

 Examples of each coming right up...

29 (C) 2007, Tom Wheeler

Using JCR: Traversing Data

try {
Node root = session.getRootMode () ;
Node earthlNode = root.getlNode () ;
Node europelNode = sarthNode.getNode ()
Node italvNode = europeNode.getNode (|-
FProperty currProp = italvNode.getPropertyvi -
String currlName = currProp.getStringi();
System.out.println(+ currlName) ;

} catch (RepositorvException =)

}

30 (C) 2007, Tom Wheeler

Using JCR: Direct Data Access

try
String path =

Property popFrop = (Property) session.getItemipath);

long population = popProp.getLongf() ;

System.out.println(+ population);

} catch (RepositorvException =) {

}

can also use session.getNodeByUUID if using referenceable mixin

31 (C) 2007, Tom Wheeler

Using JCR: Updating Data

try
italyMNode.setPropertyv (, 9000000L) ;
italylNode.setPropertv | ,) ;

session.save () ;

! catch (RepositorvException =) |

;

32 (C) 2007, Tom Wheeler

Using JCR: XPath Queries

try {
Workspace ws = sesszlion.getWorkspace();
QuervManager om = ws.getQuervManager():;
String gs = ;
Query gryv = gm.createQuery(gs, Query.XFATH);
QuervEesult res = grv.execute();
Nodelterator reslter = res.getNodes();

while (resIter.haslext()) {
Node node = reslter.nextlode() ;
}

} catch (RepositorvException)

i

33 (C) 2007, Tom Wheeler

Using JCR: SQL Queries

try |
QuervyvManager gm = session.getWorkspace () .getQuervManager () ;

String ds

|
+ ;
Query grv = gm.createQuervy(gs, Querv.S0L);
QuervEesult res = gry.exXxecute();
FowIterator reslter = res.getRows () ;
while (reslIter.hasNexti))
FEow row = reslter.nextRow() ;
long pop = row.getValue (J.getLong () ;

;

} catch (RepositorvException =)

}

34 (C) 2007, Tom Wheeler

Using JCR: Deleting Data

trv {
String path = ;
Node italvNode = (Node) session.getItem{path) ;

Property currProp = italvNode.getProperty | 17
currProp.remove () ;

italyNode.remove () ;

[l

session.save() ;

! catch (RepositorvEzception =)

}

35 (C) 2007, Tom Wheeler

Using JCR: Repository Shutdown

* Detalls are implementation-specific
- But for Jackrabbit

JackrabbitRepository jr =
(JackrabbitRepository) myvEepository;

Jr.shutdown () ;

36 (C) 2007, Tom Wheeler

For More Information

* JISR 170 (Original JCR Specification)

- http://dcp.org/en/isr/detail?id=170

* JSR 283 Site (JCR 2.0 Specification)

- http://dcp.org/en/isr/detail?id=283

37 (C) 2007, Tom Wheeler

For More Information

* Jackrabbit (Open Source JCR / Ref. Impl.)

- http://jackrabbit.apache.orqg/

» Alfresco Site (Open Source JCR)

- http://www.alfresco.com/

38 (C) 2007, Tom Wheeler

For More Information

* eXo Platform (Open Source JCR)

- http://wiki.exoplatform.com/

 Day Software, A.G. (Commercial JCR)

- http://www.davy.com/

39 (C) 2007, Tom Wheeler

Conclusion

* The Java Content Repository...

- Is a powerful data access API

* |s a Java standard
* |s easy to use and understand
» Can potentially replace JDBC, XML, etc.

- Has strong open source support
- |Is worth considering for your next application

40 (C) 2007, Tom Wheeler

