
J ava Content Repos i to ry

Tom WheelerTom Wheeler

Senior Software Engineer
Object Computing, Inc.

(C) 2007, Tom Wheeler2

What L ies Ahead?

● An introduction
– What is the Java Content Repository?

● Basic concepts
– How does it work?

● Implementation
– How do I use the API?

● Putting it all together
– We'll dissect an application that uses JCR

(C) 2007, Tom Wheeler3

What i s the JCR?

● According to the JSR-170 request:
– “A Content Repository is a high-level

information management system that is a
superset of traditional data repositories”

● Key points
– JCR defines a standard way to access data
– JCR is "content-centric"

● Developers focus on structure
● Not on how or where the data is actually stored

(C) 2007, Tom Wheeler4

Mot iva t ion fo r P ropos ing JCR

● Many proprietary content repos exist
– API for interaction is vendor-specific
– There should be a standard API

● The standard API should be
– Independent of arch., data source or protocol
– Easy for a programmer to use
– Relatively easy for vendors to implement

(C) 2007, Tom Wheeler5

JCR , the Over looked AP I

● JCR seems to suffer from bad marketing
● It is often seen as an API only for CMS
● It's a uniform interface for data access

– As suitable for accessing a single String...
– As it is for accessing a 10GB binary object
– Abstracts datasource, not just the database

(C) 2007, Tom Wheeler6

App l i ca t ion Per fo rmance

● Data storage is typically configurable *
– For example, filesystem, database or XML

● Exact needs will vary by application
– Amount, structure and type of data used

● To boost performance of your application
– Can switch/tune storage scheme
– Could also switch repository vendors

* available data storage schemes and
 configuration details vary by implementation

(C) 2007, Tom Wheeler7

Why Shouldn ' t You Use JCR?

● Can be clumsy for some tasks
– Maybe a poor replacement for properties files

● Extra dependencies
– Not part of J2SE
– Potentially a lot of extra JARs in your project

● Non-standard repository management
– Must use vendor-specific APIS in JCR 1.0
– This is much improved in JCR 2.0

● But tools are still implementation-specific

(C) 2007, Tom Wheeler8

Which App l i ca t ions Use JCR?

● Several portals and CMSs
– Liferay, JBoss, Sun OpenPortal...
– Magnolia, JLibrary, Archimede, OpenKM...

● Other interesting projects using JCR
– InfoQ Web site
– Freecaster.tv
– ASC PowerLender (loan origination system)
– Informa MapOfMedicine (clinical info app)

There are probably lots of internal corporate apps we don't know about

(C) 2007, Tom Wheeler9

Who's Beh ind JCR?

● ASF (Apache)
● ATG
● BEA
● Day Software
● Documentum
● HP

● IBM
● Interwoven
● Oracle
● SAP
● Sun
● Vignette

Spec. Lead

(C) 2007, Tom Wheeler10

Where D id i t Come F rom?

● JSR-170 was proposed by Day Software
– 21 companies represented on expert group
– Won unanimous final approval

(C) 2007, Tom Wheeler11

Where i s i t Go ing?

● JSR-170 was for JCR 1.0
● JCR 2.0 will be covered by JSR-283

– More standardized management APIs

(C) 2007, Tom Wheeler12

JCR Imp lementa t ion Leve l s

● JCR defines two conformance levels
– Level 1: Read-only (one-way)
– Level 2: Read-write (bi-directional)

● Plus optional features beyond these
● This helps legacy (CMS) vendors

– By giving them a path to compliance
● Potentially cuts costs for consumers

– Some apps would only ever need Level I

(C) 2007, Tom Wheeler13

JCR Imp lementa t ion Leve l 1

● Level 1: Read-only (one-way)
– Data access using any of these methods

● Node traversal
● Direct access
● Query using XPath

– Handles structured data only
– Can export entire repository to XML

● But cannot necessarily import one!

(C) 2007, Tom Wheeler14

JCR Imp lementa t ion Leve l 2

● Level 2: Read-write (bi-directional)
– Includes all level 1 features
– Import from XML
– Add/update/delete data
– Define/assign custom node types
– Handles structured and unstructured data
– Referential integrity

(C) 2007, Tom Wheeler15

JCR Opt iona l Fea tu res

● Locking
● Transaction management (JTA)
● Observation

– Event notification for repository changes
● Versioning

– Can retrieve previous revisions of data
● Query by SQL, in addition to XPath

(C) 2007, Tom Wheeler16

Ava i lab le Imp lementa t ions

● Apache Jackrabbit
● Open source; reference implementation

● Alfresco
● Open source; highly regarded

● eXo Platform
● Open source

● Day Software CRX
● Commercial, from spec. lead's company

(C) 2007, Tom Wheeler17

AP I Overv iew

● JCR API defined in the javax.jcr package
– 15 interfaces
– two classes
– 14 exceptions

● Avoid coding to implementation classes
– Use javax.jcr.*
– Don't use org.apache.jackrabbit.core.*
– Can't always be avoided in JSR-170

(C) 2007, Tom Wheeler18

Concepts : Da ta i s H ie ra rch ica l

NOTE: Any node can hold properties, not just a leaf node

 Root node
of workspace

(C) 2007, Tom Wheeler19

Concepts : Nodes and P roper t i es

● Nodes organize the data
● Properties store the data
● Think of a UNIX filesystem *

● Roots and paths
● Nodes are like directories
● Properties are like files

● Any node can have properties
● Not just leaf nodes

* conceptual hierarchy does not match actual storage format on disk

(C) 2007, Tom Wheeler20

Concepts : Node Types

● Nodes, like Java objects, have a type
– Types specify what data is allowed

● There are many primary types
– All inherit from a base type (nt:base)
– nt:unstructured is the most flexible

● You can also define custom types *
– Actually needing to do this is less common

than you'd think

* Implementation-specific in JSR-170, but standardized in JSR-283

(C) 2007, Tom Wheeler21

Concepts : M ix ins

● A node can only have one primary type
● But can have multiple “mixin” types

– Added via Node.addMixin(String name)
– Common ones include:

● mix:lockable supports locking
● mix:referenceable supports UUIDs
● mix:versionable supports versioning

(C) 2007, Tom Wheeler22

Concepts : Workspace /Sess ion

● javax.jcr.Session
– Provides access to repository content
– Provides access to root node
– Allows access of node by path or UUID

● javax.jcr.Workspace
– Represents a view of the repository
– 1:1 mapping to a Session object
– Accessed via Session.getWorkspace()

(C) 2007, Tom Wheeler23

Access Cont ro l

● You authenticate using some variation of
– Repository.login(Credentials cred)

● Authentication scheme is pluggable
– But JAAS implementation is typical default

● Access control is implementation-specific
– Jackrabbit uses AccessManager

● Built-in SimpleAccessManager (3 access levels)
● Can also plug-in custom implementations

(C) 2007, Tom Wheeler24

Bas i c S teps fo r Us ing JCR

● Configure repository
● Start or create repository
● Log into repository
● Get a Session
● Work with data (add/delete/etc.)
● Log out of session
● Shut down repository

these are implementation-specific,
but they happen infrequently

(C) 2007, Tom Wheeler25

Us ing JCR : Con f igu ra t ion

● Implementation-specific
● For Jackrabbit, a big ugly XML file
● Specify repository options

– Access control
– Repository data storage location
– Persistence Manager (DB, XML, FS, etc.)
– Search and indexing options

(C) 2007, Tom Wheeler26

Us ing JCR : S ta r t ing a Repos i to ry

● If first usage, must create repo first
– Otherwise, you can start an existing repo

● Details are implementation-specific
– But the simplest case for Jackrabbit:

● In production, you'll probably use JNDI

(C) 2007, Tom Wheeler27

Us ing JCR : Log in /Get Sess ion

● Authenticate using some form of
– Repository.login(Credentials cred)

– Exact type of Credentials may vary
– Only SimpleCredentials is defined by API
– There are four overloaded login methods

● Can specify credentials – or not
● Can specify workspace – or not

● Return value is a Session object

(C) 2007, Tom Wheeler28

Us ing JCR : Add ing Data

(C) 2007, Tom Wheeler29

Us ing JCR : Access ing Data

● Data is contained in properties
– To get a property, you must first get the node

● There are three ways to access a node
– Direct access
– Traversal from another node
– From the result of a query

● Examples of each coming right up...

(C) 2007, Tom Wheeler30

Us ing JCR : T ravers ing Data

(C) 2007, Tom Wheeler31

Us ing JCR : D i rec t Data Access

can also use session.getNodeByUUID if using referenceable mixin

(C) 2007, Tom Wheeler32

Us ing JCR : Updat ing Data

(C) 2007, Tom Wheeler33

Us ing JCR : XPa th Quer ies

(C) 2007, Tom Wheeler34

Us ing JCR : SQL Quer ies

(C) 2007, Tom Wheeler35

Us ing JCR : De le t ing Data

(C) 2007, Tom Wheeler36

Us ing JCR : Repos i to ry Shutdown

● Details are implementation-specific
– But for Jackrabbit

(C) 2007, Tom Wheeler37

For More In fo rmat ion

● JSR 170 (Original JCR Specification)

– http://jcp.org/en/jsr/detail?id=170

● JSR 283 Site (JCR 2.0 Specification)

– http://jcp.org/en/jsr/detail?id=283

(C) 2007, Tom Wheeler38

For More In fo rmat ion

● Jackrabbit (Open Source JCR / Ref. Impl.)

– http://jackrabbit.apache.org/

● Alfresco Site (Open Source JCR)

– http://www.alfresco.com/

(C) 2007, Tom Wheeler39

For More In fo rmat ion

● eXo Platform (Open Source JCR)

– http://wiki.exoplatform.com/

● Day Software, A.G. (Commercial JCR)

– http://www.day.com/

(C) 2007, Tom Wheeler40

Conc lus ion

● The Java Content Repository...
– is a powerful data access API

● Is a Java standard
● Is easy to use and understand
● Can potentially replace JDBC, XML, etc.

– Has strong open source support
– Is worth considering for your next application

